Point-spectrum-preserving elementary operators on $B(H)$
نویسندگان
چکیده
منابع مشابه
On the Point Spectrum of Positive Operators
1. Recently, G.-C. Rota proved the following result: Let (S, 2, p) be a measure space of finite measure, P a positive linear operator on Lx(S, 2, u) with Li-norm and L„-norm at most one. If a, | a\ = 1, is an eigenvalue of P such that af=Pf (JELx), then a2 is an eigenvalue such that a2|/|g"=P(|/|g"), where/=|/|g. It can be added that an|/|gn = P(|/|gn) for every integer n; thus Rota proved for ...
متن کاملLinear Operators on Matrices: Preserving Spectrum and Displacement Structure
In this paper we characterize those linear operators on general matrices that preserve singular values and displacement rank. We also characterize those linear operators on Hermitian matrices that preserve eigenvalues and displacement inertia.
متن کاملA Note on Spectrum Preserving Additive Maps on C*-Algebras
Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.
متن کاملSome Schrödinger Operators with Dense Point Spectrum
Given any sequence {En}n−1 of positive energies and any monotone function g(r) on (0,∞) with g(0) = 1, lim r→∞ g(r) = ∞, we can find a potential V (x) on (−∞,∞) so that {En}n=1 are eigenvalues of − d 2 dx2 + V (x) and |V (x)| ≤ (|x| + 1)−1g(|x|). In [7], Naboko proved the following: Theorem 1. Let {κn}∞n=1 be a sequence of rationally independent positive reals. Let g(r) be a monotone function o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1998
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-98-04313-5